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Introduction

This technical report combines several CLOCS architecture papers from the academic year
1987-88. It contains an overview, a detailed discussion of the memory management unit, a
description of an assembler language and specifications for compiler writers. Because of the
nature of each of the four chapters, some areas are repeated in several chapters.

i II II III I1



Chapter 1

Overview

The CLOCS architecture is an attempt to remove the highest layers of memory hierarchy to
reduce the effort of switching execution from one task to another. As a result, the CLOCS
architecture is a very simple one, with only memory to memory instructions.

1.1 Highlights

The major design consideration of this machine is to switch context in as short a time as
possible. All instructions are memory to memory. The cpu implements only one data type, a
64 bit two's complement fixed point number. Instructions are one 64 bit word. The program
context includes a status register containing a program counter, a process identification
number and various flags.

1.1.1 Noteworthy

The machine can switch context in less than one processor cycle. The overhead to switch
from one process to another is approximately equal to one third processor cycle. This feature
results in much higher performance when many context switches are occurring and satisfies
the requirements of many applications requiring very fast context switching.

1.1.2 Peculiarities

The only state inside the central processing unit(CPU) is a program status word. All data
operations are memory to memory. One result of this is that all parameter passing must be
through memory.

All memory accesses are 64 bits long. All instructions are 64 bits long and the only

2
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5 5 6 24 24

I op AM Flags i  Operand I Operand 2 I

OP Operation Code

AM Address Mode for Operand 1 and Operand 2

Figure 1.1: CLOCS Instruction Format

numerical data type is 64 bits long.

1.1.3 History

This architecture was conceived by Mark Davis in response to the challenge "if I whore to
design RISC, this is how I would do it." The architecture was designed by Mark Davis and
Bill Gallmeister.

1.2 Instruction Formats

There is one instruction format, a one word format. Figure 1 shows the instruction format.

1.2.1 Structure

Each instruction contains an operation code, a standard set of addressing mode flags, a
operation dependent flag field and specification for two operands.

1.2.2 Address specification

The 24 bit operand in the instruction may be used as immediate data or may be combined
with a 16 bit segment identifier (SID) to form a 40 bit virtual address. Each processes has
a primary instruction SID (PSID) and a primary operand SID (OSID) assigned. Indirect
addressing is also supported and during indirect addressing, the OSID or ISID may be
overridden to access any word in the teraword (240) address space.
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1.2.3 Formats

The instruction consists of

* (5 bits) operation code

* (5 bits) addressing flags, described in sect 3.4.

* (6 bits) operation flags, described in section 3.3.2 to 3.3.5 below

* (24 bits) operand 1 specification

* (24 bits) operand 2 specification

Branch and Trap Operations

For the trap operation, the flags are used to determine whether the trap will occur by
evaluation of operand 2. Addressing mode for operand 1 is not used. For the Branch
operation, the flags determine whether the branch will be taken by evaluation of operand 2.

Arithmetic Operations

In arithmetic operations, the flags determine whether to skip the next instruction by evalu-
ation of the result of the operation.

Shift Operations

For shift operations, the flags constitute the number of bits to shift operand 1 before storing
it in operand 2.

Logical Operations

During logical operations, the flags determine whether to skip the next operation and whether
to perform the operation on the entire word or on just one byte.

1.2.4 Spaces and Addressing

The only numbered address space is to main memory. The cpu deals with virtual address
and these are converted to physical addresses by the Memory Management Unit (MMU).
There are 40 bits in a virtual address for an address space of 1 teraword. There are 30 bits
in a physical address for a space of 1 gigaword.
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1.3 Programming Model

The programming model is pretty simple. All operations are memory to memory. Any

special devices added should be memory mapped. The program counter is even memory

mapped.

1.3.1 Working storage

There is no working storage. Everything is kept in main memory.

1.3.2 Memory Name Space

The memory name space is a linear sequence of one word (64 bit) entries. The instructions
address the memory using virtual addresses that are 40 bits long. These virtual addresses
are changed into a 30 bit physical address by the MMU. The formation of these addresses is
discussed at the end of the next section.

1.3.3 Addressing Modes and Address Calculation

CLOCS supports seven addressing modes, all of which are available for use with operand
one, and four of which are available for operand two. All modes used for operand 2 have
a high order bit of 0, so only the 2 lowest order bits appear in the instruction. In these

descriptions, "+" means catenate the two values. Before describing each of the addressing
modes, address formation will be discussed.

Virtual Address Formation

A virtual addreb 1 forty bits long, and it may formed in two wayq. A 16 bit segment
identifier (SID) and a 24 bit offset may be combined to form the address. Each process has
a default segment assigned for both instructions and data. The MMU stores these segment
identifiers and uses the process identifier to find the correct segment identifier. The 24 bit
offsets appear in the instructions or may be obtained from main memory. A second method
of providing the 40 bit virtual address is to get it from the 40 low order bits of a memory
location.

Physical Address Formation

The MMU can calculate a physical address in one of two ways. In the first case, the CPU
provides a process identification number and a 24 bit offset. The MMU associatively looks
up the physical page corresponding to the default segment for the given process and the 12
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high order bits of the offset. In the second case, the CPU provides the entire 40 bit address.
Then MMU then associatively looks up the physical page corresponding to the 28 high order
bits (16 SID + 12 from offset). After the physical page has been identified by either method,
the MMU verifys that the requested operation (read or write) is authorized for this process.
If it is, the 30 bit physical address is formed from 18 bits of the physical page and the 12
low order bits from the virtual address.

Opnd

(Opndl, Opnd2)

Operand := FETCH (OSID + Opnd)

OSID, the operand SID, is catenated to the high-order end of Opnd to provide a full
40-bit virtual operand address from which the operand is fetched. This is CLOCS' "direct
mode" of addressing.

0Opnd

(Opndl, Opnd2)

Operand := FETCH (OSID + FETCH(OSID + Opnd))

OSID is catenated to Opnd to form an virtual address. From this address is fetched a
24-bit offset. This offset is catenated with OSID to form the virtual operand address. This
is CLOCS' "indirect mode" addressing.

%Opnd

(Opndl, Opnd2)

Operand := FETCH (0 Segment + Opnd)

The operand is catenated to a SID of zero to arrive at the virtual operand address. This
provides rapid zero-page addressing, but otherwise is identical to Direct Addressing.

%4Opnd

(Opndl, Opnd2)

Operand := FETCH(FETCH (OSID + Opnd))

OSID is catenated to Opnd to form an virtual address; from this address a word con-
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taming a 40-bit address is fetched to form a virtual address into any page. This is indirect

addressing FROM the process' page, INTO any page.

%@%Opnd

(Opudl ONLY)

Operand := FETCH(FETCH (0 Segment + Opnd))

Opnd is catenated with the zero page SID to form a virtual address; from this address in

the zero page a word containing a 40-bit address is fetched. This virtual address is used to

fetch data in any page. This is indirect addressing FROM the zero page, INTO any page.

@%Opnd

(Opndl ONLY)

Operand := FETCH(OSID + FETCH (0 Segment + Opnd))

Opnd is catenated with the zero page SID to form an virtual address. From that address,
a 24-bit offset is fetched. This offset is catenated with the OSID to form the virtual operand
address. This is indirect addressing FROM the zero page, INTO the process' page. (We do

not see a great need for this instruction, however we put it in for symmetry. The compiler

(and the compiler writers) can tell us if it is useful.)

<Opnd

(Opndl ONLY)

Operand := Opnd

Opnd is a 24-bit immediate operand.

1.4 Data Formats

We claim to have only one data format, but actually the architecture supports two formats:

64 bit fixed point and 64 bit floating point.
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1.4.1 Fixed Point

The normal data format is a two's complement 64 bit fixed point number.

1.4.2 Floating Point

The floating point data format is IEEE 754 64 bit format.

1.4.3 Character

A word may also be considered as an array of 8 characters. The logical operations have the
ability to address each byte separately.

1.5 Operations

The CLOCS architecture has 18 operations defined. There are 5 fixed arithmetic, 4 floating
point arithmetic, 6 logical, I sequencing and 2 supervisory.

1.5.1 Decision

CLOCS has no specific decision operations. Instead, a conditional branch is provided and
all arithmetic and boolean logical operations incorporate conditional skip. The behavior of
this sequencing will be discussed with each other category of operation.

1.5.2 Data Operations

Data operations are partitioned into fixed and floating point arithmetic, boolean logic oper-
ations, and shifts.

Arithmetic Operations

CLOCS supports 64 bit fixed point arithmetic. For operations resulting in more that 64 bits,
such as multiply, the high order bits are lost. Similarly, the fractional result of a divide is
lost. Indication of multiply overflow is available to the programmer. The program may use
the remainder instruction to detect and manipulate fractional divide results.

Operation codes have been set aside in CLOCS for floating point arithmetic. We plan
that early implementations of CLOCS would not include floating point hardware, and these
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instructions would cause "unknown operation" faults, so the operating system could then
perform the floating point operations.

For both types of arithmetic, the following instruction is skipped if any of six conditions
are flagged in the instruction and are true. These conditions are:

LT result of operation less than zero.

GT result of operation greater than zero.

EQ result of operation equal to zero.

NO result of operation did NOT overflow.

NU result of operation did NOT underflow.

NZ result of operation was NOT a divide-by-zero.

Note that these conditions (or their negation) cannot be true for some operations. For in-
stance, it is not possible to get underflow unless a floating point operation is being performed.

Boolean Logic Operations

CLOCS provides AND, OR and XOR logical operations. These operations may apply to an
entire word or to one 8 bit byte within that word.

Skips for boolean logical operations occur for two possible conditions:

EQ result of operation equal to zero.

NZ result of operation is not zero.

Shifts

CLOCS provides shift left, shift right, and shift right arithmetic (extends two's complement
sign). The number of bits to be shifted (from 0 to 63) is specified in the instruction. Please
note that a zero bit shift may be used as a move. The shift instructions have no conditional
skip.

1.5.3 Sequencing

The sequence of instructions is controlled by the branch instruction, supervisor calls and
interrupts.
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Branches

The branch instruction is conditional, based on the contents of the second operand (evaluated
either as a fixed or floating point number):

Interrupt and Supervisor Call

CLOCS has a large number of interrupt vectors. On a Supervisor Call (Trap) or an interrupt,
the old status word is saved and the new status word for that supervisor call or interrupt is
loaded. Interrupts are grouped into maskable levels, and presumably, each interrupt status
word would mask that level of interrupt long enough to move the save status word out of
the way (to make interrupts reentrant).

The Supervisor call instruction has a conditional execution. If a flag is set and the
corresponding condition is true, then execution continues at the address specified in the
instruction. Otherwise, the following instruction is executed.

LT result of operation less than zero.

GT result of operation greater than zero.

EQ rvsult of operation equal to zero.

1.5.4 Supervisory

Two supervisory instructions are provided. The trap instruction conditionally causes the
execution of a supervisor call at a trap vector location. This qualifies as a supervisory
instruction because the status word is directly loaded from the trap vector, allowing the
machine to change to operating system process identification number. Condition flags for
this instruction are the same as for the branch.

The load operand segment instruction allows a program to use a different default data
segment. If the identified segment is not available to the process, the cpu will cause a fault.

Although, not specifically allocated as a supervisory instruction, moving data to the
certain addresses from ffff.ff0000 to ffff.ffffff causes changes to the cpu. For example, writing
to ffff.ffffff changes the status word. That memory location is owned by the operating system
process and cannot be written by any other process.

1.5.5 Input and Output

Input and output devices are memory mapped, so no special operations are provided to
manage them. The memory mapping is down in the memory address range ffff.fl0000 to
ffff.ffefff. A special set of addresses is provided so virtual memory and cache algorithms will

not interfere with proper device operation.
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1.6 Implement Notes

The architecture leaves two major hooks to permit single chip implementations with a reason-
able numbers of transistors. First, operations are defined for floating point, but no hardware
support is required. Under normal circumstances, floating point will be emulated by oper-
ating system routines. The second hook concerns the size of the mmu. Although provision
has been made for a very large number of mmu registers, a machine could be built with
very few registers, perhaps with only four registers. Although scrimping on the mmu will
save chip area, it will have a major impact on context switching performance; therefore, we
recommend having at least one mmu register for each page of physical memory installed in
the machine.

Hopefully, the implementations of CLOCS will be heavily pipelined. A 4 stage pipeline
with interlocks or about a 7 stage pipeline without interlocks seems reasonable. Note, that
pipelining will increase context switch latency, which may be significant if a realtime task
has to be serviced in less than 20 cycles (it is not clear how you can write a scheduler
for that, but it is a consideration). Also, caching inside the cpu may effectively improve
performance. Caching intermediate results to avoid memory references and short circuiting
pipeline latency may both be major average performance improvers.



Chapter 2

Memory Management Unit

2.1 Organization of the Memory Management Unit

The CLOCS Memory Management Unit(MMU) must support virtual memory with as many
contexts as possible. We used this guiding principle: "If information for a process is in main
memory, it must be accessed with no context switch penalty." Another design requirement
was that the MMU support lightweight processes, because an important application, real
time operating systems, frequently use lightweight processes [2]. This meant that the MMU
would provide a sharable address space with protection for the space owned by a each process.
Provisions for protected sharing of memory between two processes was also an important
requirement for real time.

2.1.1 What the MMU Does

The purpose of the MMU is to support virtual memory for the CLOCS computer system.
It does that by taking an address specification from the cpu, determining the corresponding
physical address, checking that the current process has permission for the requested memory
operation, and maintaining information of use to the operating system. The real work of
address translation is done to the physical page level; the low order 12 bits of the virtual
address are used as the low order bits of the physical address. Permission is granted for
three possible categories of operations to be applied to three types of pages: read only, read
or write, and execute only. The MMU also keeps records of access and writing to physical
pages. It records when a physical page has been read or written, USED, so the operating
system can later determine the best page to swap out using the a common algorithm for
virtual memory. The MMU also records when a "read or write" type physical page has been
changed, DIRTY, so the operating system can avoid unnecessary saving of pages to backing
store.

12
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2.1.2 External Appearance of the MMU

All of the information to determine physical addresses, check permission, and remember
physical memory status is kept in 64 bit registers in the MMU. These MMU registers are
memory mapped at beginning at location ffff00000, and are protected from user processes.
Only the superuser, PID = 0, may change them. Since each of the registers contains infor-
mation about one physical page, the MMU should contain at least as many registers as the
computer system has physical pages. In order to meet the design guiding principle concern-
ing memory access time, an excess of MMU registers should be provided for shared pages.
Memory address ffff.feffff is reserved for the number of MMU registers installed. The MMU
intercepts references to this location and provides the number. This same memory location
is also used as a command register. CLOCS can address up to 262,144 pages (218), but since
this corresponds to 1,073,741,824 words (8 gigabytes) of memory, most machines will have
less physical memory and need much fewer than 263,144 MMU registers. In the absence of
data, we estimate that an additional 10% of MMU registers over the maximum number of
expected physical pages will be adequate.

2.1.3 Physical Page Status

Part of each MMU register are some bits to indicate the status of the referenced virtual and
physical page. The use status and written or DIRTY status is maintained for the physical
page. More than one MMU register may refer to a physical page; this is the way that memory
would be shared. The MMU must provide the correct status for a physical page when an
MMU register is read. For example, MMU register fff.f00001 and ffff.f00009 both point to
physical page 4. A write is made using the entry at ffff.fi0009. If the register at ffff.fJ00001
is subsequently read, its status will indicate that the page is DIRTY even though no write
was made using that MMU entry.

Implementor may accomplish this magical updating of physical page status in any man-
ner, but one solution is suggested. An auxiliary memory with a two bit word for each physical
page stores the correct status of each physical page. During routine memory operations, the
status of a page would be updated in parallel with the memory operation. When an MMU
register is read, the physical page address in the MMU register is used to access the auxiliary
memory. The use and DIRTY bits from the auxiliary memory are used to update the MMU
register before it is provided to the CPU. As long as the page status could be fetched and the
MMU register status updated in the time of a main memory fetch, the organization would
not effect performance.

2.2 Contents of the MMU Word

The MMU registers are divided into six fields. Before we examine the MMU registers, a
quick review of terms. Each abbreviation is followed by the number of bits.

PID (14) Process identifier.
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SID (16) Segment identifier.

OSID (16) the default operand SID.

ISID (16) the default instruction SID.

VO (24) Virtual Offset.

PC (24) Program Counter, a VO.

OPND (24) Operand of in an instruction, a VO.

VP (12) Virtual page.

PP (18) Physical page.

PO (12) Physical Offset, the low order bits of VO.

VA (40) Virtual address, SID+VO.

PA (30) Physical address, PP+PO.

Each MMU register (or entry) is a 64 bit word. The MMU may store the information
for each entry in any convenient format, but it must appear as a 64 bit memory address to
the cpu with the following format:

PED 14 bits - Process Identification Number

Flags 4 bits - Permissions and Physical Page State

SID 16 bits - Segment Identifier

VP 12 bits - Virtual Page

PP 18 bits - Physical Page

2.2.1 Field Sizing Considerations

The sizing of fields followed from the portions of the architecture which was defined before
MMU design was completed. The SID was set at IS bits. We wanted at least I gigaword of
physical storage, so the physical address required 30 bits. Flags required about 4 bits. We
wanted to have 16 bits for PID and physical pages of 1024 words. Since the operand address
size was 24 bits, this physical page size would have required the VP to be 14 bits and the
PP to be 20 bits. The 34 bits for VP and PP plus the 16 bits for SID leaves only 14 bits for
flags and PID. A 10 bit PID, allowing only 1024 active processes was deemed too restrictive,
so we settled on a 4096 word physical page. This final page size required 12 bits, reducing
VP to 12 bits and PP to 18 bits. With this design, the combination of VP, PP, SID requires
only 46 bits, leaving 18 bits to be divided between 4 bits of FLAGS and a 14 bit PID. This
compromise raised the importance of maintaining the FLAGS field no larger than 4 bits, so
the assignments of the flag field bits is discussed below.
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2.2.2 Mapping of Word use to Flags

The MMU has to maintain much permission information and status for each physical page.
A process may have data access or read permission to a page. A process may have write
permission to a page. The page may contain code executable by the specified process. The
SID may be the primary SID for the PID. The page may be DIRTY, that is it is a writable
page and has been changed since it was paged in. The page may have been accessed since
accessed information was updated. If each of these categories of information were to be
represented by one bit, the flag field would require 6 bits instead of the allotted 4.

For the discussion of how we saved the two needed bits, I will use the following abbrevi-
ations:

R The page is readable by the process

W The page may be written by the process

X The page may be executed by the process

P The SID is the primary SID for this type of page for this process

U This page has been USED

D This page has been written, DIRTY

Many of the combinations do not make sense. To see these nonsensical combinations,
we constructed a truth table. A bullet(s) in this table indicates that this is not a viable
alternative. A number indicates that this combination of attributes is useful and should be
represented in the MMU registers.

P P P P Reason
D D D D for

U U U U Elimination
1 . . . . Unallocated can't be P,D,U

X 2 3 7 4 5 * s Executable can't be DIRTY
W 7 * . 7 7 * . No Write only pages
W X 7 . * * * . . . NoXandRorW

R g 6 7 7 7 7 7 7 No D, P without W
R W 8 9 12 13 14 15
R X 7 . * * * * * NoXandRorW
R W X ... e7 7 * 7 NoXandRorW

With only 15 usable states to represent, only 4 bits of state will be required. We reorga-
nized the states as shown below. The numbers at the right of the table are the 2 high order
bits of the flag field in the MMU word. The numbers at the bottom of the table are the low
order bits of the flag field. The numbers inside the table correspond to numbers in the first
table.
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Primary Primary

USED USED
Executable 2 3 4 5 00
Read Only 6 7 1 01

Read and Write 8 9 12 13 10
Read and Write Dirty 10 11 14 15 11

00 01 10 11

With this bit assignment, the third bit becomes the USED bit, the fourth bit is the
Primary bit, the first and second bit must be taken together to interpret the permissions.
The combination 0110 represents an unassigned physical page.

2.3 MMU Operations

The MMU must perform several operations.

2.3.1 Normal Read and Write

The MMU registers can be read and written by the superuser process, PID = 0. The MMU
registers are addressed as normal memory, so the MMU must reconize addresses starting at
ffff.fO000 and respond to them rather than trying to calculate a physical address.

Possible exceptions:

" Memory not present
addressing MMU register not installed

" Memory Permissions Incorrect
PID 6 0

" Flag 1101 not permitted
Unassigned Flag combination

2.3.2 From PID,VP get PP and Check Permissions

When presented with a PID, a VP, and a signal that this fetch is for an operand, the MMU
must determine the correct PP and check permissions.

Possible exceptions:

* PID, SID, VP not in MMU

* Memory Permissions Incorrect
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2.3.3 From PID,VP get PP and Check Permissions

When presented with a PID, a VP, and a signal that this fetch is for an instruction, the
MMU must determine the correct PP and check permissions.

Possible exceptions:

" PID, SID, VP not in MMU

" Memory Permissions Incorrect

2.3.4 From OSLD,VP get PP and Check Permissions

When presented with a PID, an SID, a VP and a signal that this is an operand fetch, the
MMU must determine the correct PP and check permissions.

Possible exceptions:

" PID, SID, VP not in MMU

" Memory Permissions Incorrect

2.3.5 From ISID,VP get PP and Check Permissions

When presented with a PID, an SID, a VP and a signal that this is an instruction fetch, the
MMU must determine the correct PP and check permissions.

Possible exceptions:

* PID, SID, VP not in MMU

* Memory Permissions Incorrect

2.3.6 Change Primary OSID

When directed by the cpu, change the primary OSID to the SID provided on the low order
16 bits on the data bus. This update requires setting the Primary flag on all entries with
the PID and new OSID and resetting the Primary flag in all MMU registers with the PID
and the old OSID.

Possible exceptions:
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" PID, SID not in MMU
An authorized page is has been paged out
Th: PID is not authorized to share this page

* Memory Permissions Incorrect
The new segment identified by SID is not writable

2.3.7 Change Primary ISID

When an instruction fetch is made and the instruction is located in a segment different from
the current process' primary ISID, the MMU must store the new SID. When the cpu signals
"last branch taken," the MMU must update the stored SID to be the new primary ISID
for this process. This update requires setting the Primary flag on all entries with the PID
and new SID and resetting the Primary flag in all MMU registers with the PID and the
old ISID. The cpu must signal "branch not taken" if a conditional branch is to taken. The
MMU may stall if more than one instruction fetch specifies a new ISID before it receives a
"last branch taken" signal.

Possible exceptions:

e None

The exception PID, SID, VP not in MMU can not occur for this operation because the
MMU must first fetch the new instruction using one of the above operations. If there is an
interrupt, the branch instruction will be restarted, so we will always know that the physical
page is available. Additionally, the instruction fetch operation will verify that this page
contains executable code, so no Memory Permissions Incorrect exception may occur.

2.3.8 Reset USED for All Physical Pages

When the operating system selects a page to swap out of main memoi y it may use the USED
bit. Frequently, the operating system will want all USED bits set to zero. To set the USED
bit for all physical pages to zero, write a word with the low order bit of 1 to the memory
location ffff.feffff. That location when read contains the number of MMU registers installed.

Possible exceptions:

* None

2.4 MMU Exceptions

Exceptions have been described after each operation.
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2.5 Implementing Common Virtual Memory Opera-
tions

In this section, I will described how to implement some common virtual memory operations
using the primitives provided by the CLOCS MMU.

2.5.1 Write Back Virtual Memory

Before a page may be removed from physical memory, the DIRTY status should be check for
any MMU register referring to that physical page. Saving the page on disk before reusing
the page is only required when the DIRTY status is set. This method significantly reduces
memory traffic because much data memory is read, but not changed before it 6 paged out.

2.5.2 Copy on Write

Copy on write is an algorithm frequently used by UNIX operating systems and VAX com-
puters. A process is assigned a block of memory containing information or code. As long
as it does not change this memory, it shares the memory with another process. As soon as
the process attempts to change the memory, the operating system must intervene to make
a separate copy for this process, and then allow the change to happen. This facility is very
useful for the vfork system call in UNIX. Copy on write may be simulated by assigning the
page as a shared, read only page. Shared simply means that the page has more than one
MMU register pointing to it. When the process tries to write to the "copy on write" page,
the MMU causes an exception. The operating system exception handler then copies the page
to an unused physical page. It then corrects the MMU register to point to the new physical
page and restarts the user process with the instruction that caused the fault.

2.5.3 Not-Used-Recently Page Replacement

One popular page replacement algorithm is Not-Used-Recently. This technique is described
in detail in Deitel [1]. Deitel points out that a USED bit and a DIRTY bit must be maintained
for each page, and this information is available from the CLOCS MMU.

2.6 The MMU Designs We Discarded

During MMU design, we considered several schemes: the one described above and anothers.
Some of the alternate design were interesting to us or involved important design decisions,
so the ones we threw away are described here.
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2.6.1 The Second Design - Virtual and Physical Tables

The second design differed in that the MMU contained two tables instead of one. One table,
Tablel, contained PID, FLAGS, and SID. The other table, Table2, held a Dirty bit, SID
and VP. The second table had one entry for each physical memory page, so the PP did not
have to be included in the table. The advantage of the second scheme was that it was more
proper for support of lightweight processes. The PID, SID, FLAGS relationship was unique.
The primary scheme was better in that it could support heavyweight as well as lightweight
processes and also could resolve the permissions down to the physical page level. With
that scheme, one segment could hold both code and data space on separate pages, so small
processes need not take up two segments of address space. The other difference between the
schemes was the simplicity of the data structure and duplication of PID's for the primary
scheme and duplication of SID's in the secondary scheme.

The final decision of which scheme to use was based on the projected silicon area of the two
schemes. We assumed field sizes the same for the two schemes except the secondary scheme
needed one extra DIRTY bit. PID, FLAGS, SID and Virtual Page were all associative. This
distinction was made because associative bits would require at least 25 % more silicon area
to implement. Most associative bit implementations would require about 50 % more area
than a nonassociative bit.

To compare the two schemes, we specified a computer system with 4000 pages of physical
memory and capable of running 1000 processes. This machine is a typical system to utilize
the power of the CLOCS architecture and support large applications. For a machine of
this size, the primary scheme required 4500 table entries (one for each physical page plus
500 for memory sharing). Each entry was 64 bits long, 44 of which were associative. The
secondary scheme required Tablel with 2500 entries, two for each processes (one data, one
code) and 500 extra for memory sharing. Each entry in this table was 34 bits long and all
were associative. The second table, Table2, contained 4000 entries, one for each physical
page. Each entry was 29 bits long and 28 of them where associative. The table below shows
the bits and relative area for the two schemes. The column labeled "Total Relative Area" is
the total area of the table in nonassociative bits, assuming that associate bits are 50% larger
than nonassociative ones.

MMU Scheme Associative Total Total Relative
and Table Bits Bits Area

Secondary Tablel 80,000 85,000 125,000
Secondary Table2 112,000 116,000 172,000
Secondary Total 192,000 201,000 297,000

Primary Total 1 198,000 1 288,000 387,000

The small additional cost of associative bits and the increased function of the primary
scheme, particularly since the primary scheme supported heavyweight processes, a concept
used by many available operating systems, settled the decision in favor of the primary scheme.
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2.6.2 The Third Design - Some Registers Permanently Mapped

The third MMU design attempted to reduce the number of bits of memory in the MMU and
to make some operating system task more efficient by permanently assigning some of the
MMU registers to physical pages. In this scheme, memory locations ffff.f0000 to ffff.f3ffff
were assigned to physical pages 0 to 262,144, respectively. These memory locations always
returned the corresponding physical page number when read, and the physical page was
ignored during writes to these MMU registers. The memory from ffff.f40000 to ffff.fefffe
could be assigned to any physical page.

The advantages of this third scheme were fewer memory bits in the MMU and a possible
improvement in operating system speed. If a computer system had N physical pages and
allow for and addition M pages to be shared, then N+M MMU registers would be required.
We estimate The third scheme would then save N*18 bit s of memory over the primary
scheme. Another advantage for this scheme was impruved performance during a naive search
for a page to swap out. With the third scheme, a search for a potentially shared page would
only require O(M) while the primary scheme would take O(N+M). As estimated above, M
would only be 10% of N, so this new scheme would yield an order of magnitude performance
improvement. This advantage disappeared, though, when a O(log M) software algorithm was
suggested. The data structures and algorithm to attain this superior level of performance
are well understood.

With one major advantage of this scheme eliminated, the disadvantages became more
persuasive. This scheme of two classes of MMU registers lacks propriety. Although the same
operations may be performed on the two types of MMU registers, different actions result.
If the systems programmer makes an error, and tries to set the physical page number of
one of the permanently assigned MMU registers, the action is ignored and the programmer
receives no warning of his error. An additional disadvantage of the third scheme is that the
number of shared pages is limited to M. With the primary scheme, all MMU's registers may
be used for shared pages, with only the disadvantage that some physical pages may not be
accessible, a much more graceful degradation of performance.

Since the only advantage to this scheme was the saving of some memory in the MMU
and it introduced such serious impropriety, we selected the primary scheme over it.



Chapter 3

Assembler Language

3.1 Memory Architecture

The CLOCS memory space is all mapped in to one address space. The working store (pro-
gram counter), Memory Management Unit (MMU) registers and all Input Output devices
share the address space with main memory. Refer to the CLOCS Compiler and Assembly
Language Description for a more detailed treatment of the architecture.

3.1.1 Memory Scheme

A quick review of terms pertinent to the memory:

PID (14) Process identifier.

SID (16) Segment identifier.

OSID (16) the default operand SID.

ISID (16) the default instruction SID.

VO (24) Virtual Offset.

PC (24) Program Counter, a VO.

OPND (24) Operand of in an instruction, a VO.

VP (12) Virtual page.

PP (18) Physical page.

PO (12) Physical Offset, the low order bits of VO.

VA (40) Virtual address, SID+VO.

22
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PA (30) Physical address, PP+PO.

The MMU translates the combination of PID, SID, VP to PP and checks the PID's permis-
sion on that SID+VP combination. The 30 bit Physical Address gives that machine a real
memory capability of 1,073,741,824 words (or 8 gigabytes). All accesses to memory are by
64-bit word access only.

3.1.2 Memory-Mapped Access

CLOCS reduces the variety of its instructions by mapping all state information of the machine
into the memory space of the processor. Thus, the State Word, consisting of the PC, PID,
and Flags, may be found at location ffff.ffffff (This is segment flif, address ffifff). The
MMU registers begin at ffff.f0000. Location ffff.feffff contains the number of MMU registers
installed on this CPU. Input-output devices are mapped into the memory from ffff.ff0000
to ffff.ffefff. The trap and interrupt vectors, likewise, can be found in the this segment, at
addresses ffff.ff000 to ffff.fffffe.

3.2 Data Types

CLOCS supports a single arithmetic data type: the 64-bit signed integer represented as a
2's complement. There is provision for an optional data type, a 64 bit TEEE 754 floating
point number.

3.3 Instruction Syntax

The input to the assembler is an ascii text file. Each line in the text file contains (1) a
machine instruction (2) a assembler directive (3) a label or (4) a comment.

3.3.1 Machine Instructions

A machine instruction consists of zero or more spaces, an operation code abbreviation fol-
lowed by one or more spaces followed by the operands of the instructions. Operands are
separated by commas and must not contain spaces. Operands may be decimal integers,
hexadecimal numbers indicated by "OX" as the first two characters, or a label which is a
word starting with A-Z, "#", or underscore and containing those characters or digits 0-9.
Anything on the line after the operands is considered to be a comment and is ignored.

Sub 123,1 oc22 this is a comment
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3.3.2 Assembler Directives

Assembler directives instruct the assembler for actions that do not result in generation of

an executable machine instruction. Some of the assembler directives are followed by a single

operand. The assembler directives are as follows:

.sect section command, begins .text, .data, .rom, or .bss sections

.data2 data command, reserves 1 word of storage. May be followed by a decimal integer or

by a character string.

.ext specifies the operand is an external label.

3.4 Instruction List

In this instruction format, the 5 bits of operation code are followed by 5 bits of flags which
determine addressing modes for the two operands. The next 6 bits specify flags or a count.
The operand, 24 bits long, follows. A number of addressing modes, as described elsewhere
in this document, can be applied to the operand(s) by the judicious setting of the addressing
mode flags.

3.5 Addressing Modes

CLOCS supports seven addressing modes, all of which are available for use with operand

one, and four of which are available for operand two. In each subsection below, the title of
the addressing mode appears as the header. After each addressing mode identification is the
bit pattern appearing in the instruction to identify that mode. All modes used for operand 2

have a high order bit of 0, so only the 2 lowest order bits appear in the instruction. In these
descriptions, "+" means catenate the two values. Next is listed the operands for which it

may be used. An example is given of the operand. In these examples, 123 refers to location
123 decimal, and 1oc22 is a label associated with some storage definition statement in the
program. A formal and textual definition of the operand location ends each section.

3.5.1 Opnd - 000

(Opndl, Opnd2)

Sub 123,loc22

Operand := FETCH (OSID + Opnd)
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OSID, the operand SID, is catenated to the high-order end of Opnd to provide a full
40-bit virtual operand address from which the operand is fetched. This is CLOCS' "direct

mode" of addressing.

3.5.2 0Qpnd - 001

(Opndl, Opnd2)

Sub 4123,61oc22

Operand:= FETCH (OSID + FETCH(OSID + Opnd))

OSID is catenated to Opnd to form an virtual address. From this address is fetched a
24-bit offset. This offset is catenated with OSID to form the virtual operand address. This
is CLOCS' "indirect mode" addressing.

3.5.3 %Opnd - 010

(Opndl, Opnd2)

Sub %123,%Yoc22

Operand := FETCH (0 Segment + Opnd)

The operand is catenated to a SID of zero to arrive at the virtual operand address. This
provides rapid zero-page addressing, but otherwise is identical to Direct Addressing.

3.5.4 %@Qpnd - 011

(Opndl, Opnd2)

Sub %Q123, 'Q1oc22

Operand := FETCH(FETCH (OSID + Opnd))

OSID is catenated to Opnd to form an virtual address; from this address a word con-
taining a 40-bit address is fetched to form a virtual address into any page. This is indirect
addiessing FROM the process' page, INTO any page.
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3.5.5 %©%Opnd - 101

(Opndl ONLY)

Sub %0123.loc22

Operand := FETCH(FETCH (0 Segment + Opnd))

Opnd is catenated with the zero page SID to form a virtual address; from this address in
the zero page a word containing a 40-bit address is fetched. This virtual address is used to
fetch data in any page. This is indirect addressing FROM the zero page, INTO any page.

3.5.6 @%Opnd - 110

(Opndl ONLY)

Sub Q%123.1oc22

Operand := FETCH(OSID + FETCH (0 Segment + Opnd))

Opnd is catenated with the zero page SID to form an virtual address. From that address,
a 24-bit offset is fetched. This offset is catenated with the OSID to form the virtual operand
address. This is indirect addressing FROM the zero page, INTO the process' page. (We do
not see a great need for this instruction, however we put it in for symmetry. The compiler
(and the compiler writers) can tell us if it is useful.)

3.5.7 <Opnd - 100

(Opndl ONLY)

Sub <123,1oc22 "note that 123 is subtracted from
"the contents of 1oc22

Operand := Opnd

Opnd is a 24-bit immediate operand.

3.6 Conditional Skip

Certain CLOCS instruction include a ronditional skip of the next instruction. These instruc-
tions. are: Add, Sub, Mult, Div, Rem, And, Or, Xor.
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For the Add, Sub, Mult, Div, and Rem instructions, the conditions are:

LT result of operation less than zero.

GT result of operation greater than zero.

EQ result of operation equal to zero.

NO result of operation did NOT overflow.

NU result of operation did NOT underflow.

NZ result of operation was NOT a divide-by-zero.

For the And, Or, and XOR instructions, the conditions are:

EQ result of operation equal to zero.

NZ result of operation is not zero.

Each of the conditions correspond to a bit in the instruction. If the bit is set and the
condition is true, then the next instruction is not executed. Of course, if no condition is
specified, the following instruction will never be skipped.

For ease of generation by the compiler and to ease hand coding assembler, the appropri-
ate possibilities of condition skip have been incorporated into the operation abbreviation.
Conditional skips may also be specified by adding the abbreviations above after the required
operands. These end of line conditionals override any conditionals specified in the operation
code abbreviation, so should be used with care. Following are some example instructions
and descriptions of the interpretation and use.

SUBGT Opndl, Opnd2
Subtract the first operand and from the second operand, placing the result in the second
operand, and skip the following instruction if the result was greater than zero. Note that
this instruction, when Opnd2 is an immediate one, followed by a trap or branch, provides a
p() operation on the semaphore addressed by Opndl.

DIVNZ Opndl, Opnd2
Divide operand 1 by operand 2, placing the result in operand 2, and skip the following
instruction if the result was NOT a divide-by-zero. If the next instruction is a branch to an
error handling routine, this combination allows easy handling of arithmetic exceptions by
the user program.

The trap and branch instructions use the same flags, but are conditionally executed
instead of conditionally skipping the next instruction.
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3.7 Instruction List

In the list of instruction below, the heading identifies the operation and operands for the
instruction. In typewriter type, a list of the instruction abbreviations is given, including
all abbreviations addressing conditional skips or byte logical operations. In these descrip-
tions Opndl and Opnd2 refer to the operand definitions above. The optional conditional
description appears at the end of the required operands.

3.7.1 Add Opndl, Opnd2

ADD Opudi * pnd2 (,ConditiowaJ
ADDGT Opndl, Opnd2 C. Conditionall
ADDGE Opudi .Opnd2EConditionall
ADDEQ Opudi ,0pnd2EConditioraal])
ADDLT Opnd, .Opnd2C. Conditiomal
ADDLE Opndi, Opnd2C. Conditional)1
ADDNO Opnd , Opnd2 E.ConditionalJ
ADDIU Opudi , pnd2 C. Conditional)
ADDF Opudi .Opnd2LConditionalj

Operand one and operand two are added in full 64-bit two's complement arithmetic; the
result is placed in operand two. (conditional skips: LT, GT, EQ, NO, NU)

3.7.2 Sub Opndl, Opnd2

SUB Opndi * pnd2 C *Conditiona1J

SUBGT Opudi ,Opnd2[,Conditiona1J
SUBGE Opudi .Opnd2[. Conditional)
SUBEQ Opndi .Opnd2C.Coditional)
SUELT Opndi .Opnd2[,Conditiowa)
SUBLE Opndi ,Opnd2[,ConditionalJ
SUBNO Opndi ,Opnd2(.Conditional)
SUBNU 0pndi .Opnd2C, Conditional)
SUBF Opndi, Opnd2 C,Conditiona1J

Operand one is subtracted from operand two; the result is placed in operand two. Arith-
metic is full 64-bit two's complement. (conditional skips: IT, GT, EQ, NO, NU)
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3.7.3 Mult Opndl, Opnd2

KUlL Opndl. Opu2E .Conditionall
MULGT Opadl ,Opnd2(.Couditional)
XULGE Opndi ,apnd2(,ConditionalJ
NULLT 0padi ,Dpnd2(,Conditional]3
KULLE Opadi ,Opnd2[. Conditional)1
NULEQ Opadi ,Opnd2[,Conditional)
NULID Opradi ,Opzd2,Conditional)1
KULNU Opndl ,0pnd2[,Couditional)
MULF Opndl .Opud2E,Conditiona1J

The low-order 64 bits of operand one are multiplied by the low-order 64 bits of operand
two, producing a 64-bit result which is stored in operand two. If the operation results in a
number that cannot be represented in 64 bits, an overflow exception will occur. (conditional
skips: LT, GT, EQ, NO, NU)

3.7.4 Div Opndl, Qpnd2

DIV Opudi , pnd2[C,Conditioual)
DIVGT Opudl,* pnd2 C,*Conditional)
DIVGE Opndl, Opad2C, Conditional)
DIVEQ Opudl .Opnd2[,ConditionalJ
DIVLT Opndl ,Opnd2,Condition&lJ
DIVLE 0pndl .Opnd2,Conditional)
DIVID Opnd1, Opnd2C, Conditional)1
DIVWU Dpndi ,Opnd2[,Conditional)
DIVNZ Opnd1, Opnd2 (,Condition&1J
DIVF Opndl .Opnd2[,Conditiona1)

Operand two is divided by operand one, and the result is placed in operand two. The
operands are 64-bit quantities; the result is a 64-bit quantity. Division is in two's comple-
ment integer arithmetic. Division by a divisor greater than the quotient will result in zero.
(conditional skips: LT, GT, EQ, NO, NU, NZ)

3.7.5 Rem Opndl, Opnd2
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REM OpndI ,Opnd2 C,Conditional)1

Operand two is divided by operand one, and the remainder of this division is placed in
operand two. Division is as in the Div instruction. (conditional skips: LT, GT, EQ, NO,
NU, NZ)

3.7.6 And Opndl, Opnd2

AND Opndl *Opnd2 ,ConditionalJ
ANDEQ Opndl. Opnd2 C *Conditional)

ANDNZ Opadi.Opnd2 (,Coaditional)
AIDBYT Constant,Opndl .Opnd2[,ConditionalJ
ANDBYTEQ ConstantOpndl ,Opnd2 (,Conditional)
AIDBYTUZ Constant,Opndl,*Opnd2 [,Conditional)

Operand two and operand one are ANDed together in bitwise fashion; the result is
placed in operand two. fashion, and the result is placed in operand two. These operations
are normally bit wise for all bits, but may be applied to only an 8 bit byte selected by a
Constant. (conditional skips: EQ, NZ)

3.7.7 Or Qpndl, Opnd2

OR Opudi. Opnd2[C,Conditiona1J
OREQ Opadi .Opud2CConditional]
ORNZ Opndl ,Opnd2(.ConditionalJ
ORBYT Constant, Opnd , Opnd2 E,Conditional)
ORBYTEQ Constant .Opndi ,Opnd2C,ConditionalJ
ORBYTNZ Constant,Opndl .Opnd2I,ConditionalJ

Operand two and operand one are ORed together in bitwise fashion, and the result is
placed in operand two. These operations are normally bit wise for all bits, but may be
applied to only an 8 bit byte selected by a Constant. (conditional skips: EQ, NZ)
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3.7.8 Xor Opndl, Opnd2

XO0 pndI ,Opnd2[E, Condition&lJ
XOREQ Opndl ,Opnd2EConditionalj
XORJIZ 0piadi .pnd2[.ConditionaIj
XORBYT CoastantOpndi ,Opzd2[,Conditional)
XORBYTEQ Costant,Opndl *Opu~d2 E *Conditioua:l)
XORBYTIZ Constant ,Opndl,Opnd2CConditionalJ

Operand one and operand two are exciusive-ORed together in bitwise fashion, and the
result is placed in operand two. These operations are normally bit wise for all bits, but may
be applied to only an 8 bit byte selected by a Constant. (conditional skips: EQ, NZ)

3.7.9 Left N, Opndl, Opnd2

LEFT Constant.OpudI ,0pnd2

Operand one is shifted left N bits (N is supplied in the flags field of the instruction - it
is not a true operand); the result of the shift is placed in operand two. A move is affected
by setting N equal to zero. The low-order bits of the result are cleared to zero.

3.7.10 Right N, Qpndl, Qpnd2

RGHT Coznstant,0pndl .Opnd2

Operand one is shifted right logically (sign bit is ignored) N bits. The high N bits of the
result are cleared to zero. The result is placed in operand two.

3.7.11 RightArith N, Opndi, Qpnd2

RGHTA Constant,0pndl ,0pnd2
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Operand one is right shifted arithmetically (sign extension is performed) N bits. The
result is placed in operand two.

3.7.12 Branch Opndl, Opnd2

BRN Opndl, Opnd2 [,Conditional]
BEQ Opndl, Opnd2 [,ConditionalJ

BLE Opnd1, 0pnd2 [,Conditiona.]

BGE Opndl, Opnd2 [,Conditionalj
BNE apndl, Opnd2 [,ConditionalJ
BGT Opndl, Opnd2 [, ConditionalJ

BLT Opndl,Opnd2[,Conditiona1J

The program counter is conditionally loaded from operand one, based on the result of
comparisons with operand 2 (LT, GT, EQ, NE, Unconditional, LE, GE). If the addressing
mode of operand 1 is such that a new ISEG is fetched, that new ISEG is stored into the
MMU. This allows for the changing of instruction contexts. (Operand context is changed
via the LoadOSID instruction)

3.7.13 Trap Opndl, Opnd2

TIP Opndl,Opnd2CConditionalJ

Control switches to the context indicated by the trap vector indexed by Opndl (a number,
not an address), based on the result of comparisons done with operand 2. Comparison
conditions are the same as for the branch instruction.

3.7.14 LoadOSID Opndl

LOB Opndl
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The OSID from Opndl is loaded into the MMU as the primary OSID for this process. If
no loaded physical page assigned to the current process has this OSID, the CPU will trap.
The operating system may then decide if this is an authorized OSID for the current process.

3.7.15 Floating Point Instructions

Floating point instructions codes are not yet assigned

Floating point instructions are important enough to this machine that we will reserve
operation codes for add, subtract, multiply and divide. The instructions will operate on
IEEE standard 64 bit floating point numbers with the round to closest rounding option. If
not implemented in hardware, the instructions will be executed by the kernel as it handles the
unassigned operation code exception. This easily allows addition of floating point hardware
later, and the software handling will take maximum advantage of the fast context changes
available. Conditional skips shall be handled in the same manner as for fixed point arithmetic.



Chapter 4

Compiler Description

As support for research into issues of architecture and operating systems, a cross compiler for
a hypothetical reduced instruction set computer is required. The language to be compiled is
C, and the architecture targeted is the CLOCS architecture being designed by Mark Davis
and Bill 0. Gallmeister.

4.1 Class Project

The CLOCS cross compiler to be built must be a modular system which can be easily mod-
ified to output CLOCS assembly language, object code, or high-level simulator constructs.
Note that all of these output formats should be roughly isomorphic to one another; producing
one from another is mainly a lexical matter.

The CLOCS team has no illusions that the compiler produced by the 240 team will be the
final solution to CLOCS' compiler needs; therefore, it is essential that the CLOCS team be
able to do work on the compiler after completion of the 240 project. For these reasons, the
compiler should be built to output code statistics, and the compiler must be well-structured,
well-documented and moderately easy to maintain and modify.

4.2 Fast Context Switch

The CLOCS project is to design a computer architecture to handle real time applications
while supporting a full-featured, general purpose operating system. This computer has the

ability to change context rapidly.

34
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4.3 CLOCS Architecture

The CLOCS architecture is a simple one. All operations are memory to memory, and the
processor has minimal internal state. There are few data types and instructions. Several
addressing modes are provided to compensate for the lack of index registers.

4.3.1 Simple Architecture

Because the research is aimed at answering questions regarding the performance of simple
machines, and also because this IS a research project, the CLOCS architectu.'e is simple.

RISC

In keeping with the RISC philosophy, CLOCS has few instructions (about twenty), few data
types (the word, interpreted as a logical, arithmetic, or addressing entity), and a minimal
amount of state. CLOCS has exactly one register, the Status Word.

Research Considerations

Since this is a research machine, a simple architecture was decided upon; this allows us to
concentrate more on the central issues of the research.

In addition, to facilitate comparison of CLOCS and currently available designs, it is
desired that CLOCS bear some outward resemblance to other existing RISC machines. The
machine the CLOCS is designed to resemble the most closely is Sun Microsystems' SPARC
processor.

4.3.2 Memory Address Space Organization

16 Meg Directly Addressable

Operand addresses in instructions, as well as the program counter itself, are 24 bits long.
This gives a default addressing range of 16 megawords.

One Teraword Total Virtual Address Space

For each process running on the CLOCS cpu, a default segment identifier is supplied fcr
instruction and operands. The segment identifier is prepended to the 24 bit operand or
program counter address, to determine the desired address. These segment identifiers are 16
bits long, providing a total of 40 bits of address. Some addressing modes allow altering the
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segment identifier,so that all of the virtual address space may be addressed. The address
space is 64K segments of 16 megaword each, for 2-to-the-40th (1,099,511,627,776 or one
teraword) total virtual address space.

PIDs, Processor Levels and Permissions

CLOCS supports in hardware the notion of distinct processes. In the program status word
is the Process Identifier (PID), a 14 bit field that identifies the running process. Associated
with each process is a default instruction segment, a default operand (or data) segment and
memory access permission for segments being used by the process.

A superuser, PID 0, may access the Memory Management Unit (MMU) registers to
establish this information. Any process may read or execute segment 0, and the process
with PID 0 may read, write or execute in any segment, but all other memory access must be
approved by the MMU. A user process (PID i 0) may have permission to read only, read
or write, execute only, or read and execute a segment. Segments may be default segments
(used when no SID is specified like during instruction fetch or fetching operands using the
24 bit virtual offset in the instruction word).

Memory Scheme

A quick review of terms:

PITD (14) Process identifier.

SID (16) Segment identifier.

OSID (16) the default operand SID.

ISID (16) the default instruction SID.

VO (24) Virtual Offset.

PC (24) Program Counter, a VO.

OPND (24) Operand of in an instruction, a VO.

VP (12) Virtual page.

PP (18) Physical page.

PO (12) Physical Offset, the low order bits of VO.

VA (40) Virtual address, SID+VO.

PA (30) Physical address, PP+PO.

The MMU translates the combination of PID, SID, VP to PP and checks the PID's permis-
sion on that SID+VP combination. The 30 bit Physical Address gives that machine a real
memory capability of 1,073,741,824 words (or 8 gigabytes). All accesses to memory are by
64-bit word access only.
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Memory-Mapped Access

CLOCS reduces the variety of its instructions by mapping all state information of the machine
into the memory space of the processor. Thus, the State Word, consisting of the PC, PID,
and Flags, may be found at location ffff.ffffff (This is segment ffff, address fffiff). The
MMU registers begin at ffff.f00000. Location ffff.feffff contains the number of MMU registers
installed on this cpu. Input-output devices are mapped into the memory from ffff.ff0000
to ffff.ffefff. The trap and interrupt vectors, likewise, can be found in the this segment, at
addresses ffff.fffOOO to ffff.fffffe.

4.3.3 Minimal Processor State

4.3.4 Data Types

CLOCS supports a single arithmetic data type: the 64-bit signed integer represented as a
2's complement. There is provision for an optional data type, a 64 bit IEEE 784 floating
point number.

4.3.5 Instruction Format

In this instruction format, the 5 bits of operation code are followed by 5 bits of flags which
determine addressing modes for the two operands. The next 6 bits specify flags or a count.
The operand, 24 bits long, follows. A number of addressing modes, as described elsewhere
in this document, can be applied to the operand(s) by the judicious setting of the addressing
mode flags.

4.3.6 Addressing Modes

CLOCS supports seven addressing modes, all of which are available for use with operand one,
and four of which are available for operand two. After each addressing mode identification
is the bit pattern appearing in the instruction to identify that mode. All modes used for
operand 2 have a high order bit of 0, so only the 2 lowest order bits appear in the instruction.
In these descriptions, "+" means catenate the two values.

Opnd - 000

(Opndl, Opnd2)

Operand := FETCH (OSID + Opnd)

OSID, the operand SID, is catenated to the high-order end of Opnd to provide a full
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40-bit virtual operand address from which the operand is fetched. This is CLOCS' "direct
mode" of addressing.

@Opnd - 001

(Opndl, Opnd2)

Operand:= FETCH (OSID + FETCH(OSID + Opnd))

OSID is catenated to Opnd to form an virtual address. From this address is fetched a
24-bit offset. This offset is catenated with OSID to form the virtual operand address. This
is CLOCS' "indirect mode" addressing.

zOpnd - 010

(Opndl, Opnd2)

Operand := FETCH (0 Segment + Opnd)

The operand is catenated to a SID of zero to arrive at the virtual operand address. This
provides rapid zero-page addressing, but otherwise is identical to Direct Addressing.

z@Opnd - 011

(Opndl, Opnd2)

Operand:= FETCH(FETCH (OSID + Opnd))

OSID is catenated to Opnd to form an virtual adaress; from this address a word con-
taining a 40-bit address is fetched to form a virtual address into any page. This is indirect
addressing FROM the process' page, INTO any page.

z@zOpnd - 101

(Opndl ONLY)

Operand:= FETCH(FETCH (0 Segment + Opnd))

Opnd is catenated with the zero page SID to form a virtual address; from this address in
the zero page a word containing a 40-bit address is fetched. This virtual address is used to
fetch data in any page. This is indirect addressing FROM the zero page, INTO any page.
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@zOpnd - 110

(Opndl ONLY)

Operand:= FETCH(OSID + FETCH (0 Segment + Opnd))

Opnd is catenated with the zero page SID to form an virtual address. From that address,
a 24-bit offset is fetched. This offset is catenated with the OSID to form the virtual operand
address. This is indirect addressing FROM the zero page, INTO the process' page. (We do
not see a great need for this instruction, however we put it in for symmetry. The compiler
(and the compiler writers) can tell us if it is useful.)

<Opnd - 100

(Opndl ONLY)

Operand := Opnd

Opnd is a 24-bit immediate operand.

4.3.7 Conditional Skip

Certain CLOCS instruction include a conditional skip of the next instruction. These instruc-
tions are: Add, Sub, Mult, Div, Rem, And, Or, Xor.

For the Add, Sub, Mult, Div, and Rem instructions, the conditions are:

LT result of operation less than zero.

GT result of operation greater than zero.

EQ result of operation equal to zero.

NO result of operation did NOT overflow.

NU result of operation did NOT underflow.

NZ result of operation was NOT a divide-by-zero.

For the And, Or, and XOR instructions, the conditions are:

EQ result of operation equal to zero.

NZ result of operation is not zero.
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Each of the conditions correspond to a bit in the instruction. If the bit is set and the
condition is true, then the next instruction is not executed. Of course, if no condition is
specified, the following instruction will never be skipped.

Following are some example instructions and descriptions of the interpretation and use.

SUB GT Opndl, Opnd2
Subtract the first operand and from the second operand, placing the result in the second
operand, and skip the following instruction if the result was greater than zero. Note that
this instruction, when Opnd2 is an immediate one, followed by a trap or branch, provides a
p0 operation on the semaphore addressed by Opndl.

DIV NZ Opndl, Opnd2
Divide operand 1 by operand 2, placing the result in operand 2, and skip the following
instruction if the result was NOT a divide-by-zero. If the next instruction is a branch to an
error handling routine, this combination allows easy handling of arithmetic exceptions by
the user program.

The trap and branch instructions use the same flags, but are conditionally executed
instead of conditionally skipping the next instruction.

4.3.8 Instruction List

Add Opndl, Opvd2

Operand one a.u operand two are added in full 64-bit two's complement arithmetic; the
result is placed in operand two. (conditional skips)

Sub Opndl, Opnd2

Operand one is subtracted from operand two; the result is placed in operand two. Arithmetic
is full 64-bit two's complement. (conditional skips)

Mult Opndl, Opnd2

The low-order 64 bits of operand one are multiplied by the low-order 64 bits of operand
two, producing a 64-bit result which is stored in operand two. If the operation results in a
number that cannot be represented in 64 bits, an overflow exception will occur. (conditional
skips)
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Div Opndl, Opnd2

Operand two is divided by operand one, and the result is placed in operand two. The
operands are 64-bit quantities; the result is a 64-bit quantity. Division is in two's comple-
ment integer arithmetic. Division by a divisor greater than the quotient will result in zero.
(conditional skips)

Rem Opndl, Opnd2

Operand two is divided by operand one, and the remainder of this division is placed in
operand two. Division is as in the Div instruction. (conditional skips)

And Opndl, Opnd2

Operand two and operand one are ANDed together in bitwise fashion; the result is placed
in operand two. (conditional skips)

Or Opndl, Opnd2

Operand two and operand one are ORed together in bitwise fashion, and the result is placed
in operand two. (conditional skips)

Xor Opndl, Opnd2

Operand one and operand two are exclusive-ORed together in bitwise fashion, and the result
is placed in operand two. (conditional skips)

Left N, Opndl, Opnd2

Operand one is shifted left N bits (N is supplied in the flags field of the instruction - it is
not a true operand); the result of the shift is placed in operand two. A move is affected by
setting N equal to zero. The low-order bits of the result are cleared to zero.

Right N, Opndl, Opnd2

Operand one is shifted right logically (sign bit is ignored) N bits. The high N bits of the
result are cleared to zero. The result is placed in operand two.
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RightArith N, Opndl, Opnd2

Operand one is right shifted arithmetically (sign extension is performed) N bits. The result
is placed in operand two.

Branch Opndl, Opnd2

The program counter is conditionally loaded from operand one, based on the result of com-
parisons with operand 2 (LT, GT, EQ, NE, Unconditional, LE, GE). If the addressing mode
of operand 1 is such that a new ISEG is fetched, that new ISEG is stored into the MMU.
This allows for the changing of instruction contexts. (Operand context is changed via the
LoadOBase instruction)

Trap Opndl, Opnd2

Control switches to the context indicated by the trap vector indexed by Opndl (a number,
not an address), based on the result of comparisons done with operand 2. Comparison
conditions are the same as for the branch instruction.

LoadOSID Opndl

The OSID from Opndl is loaded into the MMU as the primary OSID for this process. If no
loaded physical page assigned to the current process has this OSID, the cpu will trap. The
operating system may then decide if this is an authorized OSID for the current process.

Floating Point Instructions

Floating point instructions are important enough to this machine that we will reserve oper-
ation codes for add, subtract, multiply and divide. The instructions will operate on IEEE
standard 64 bit floating point numbers with the round to closest rounding option. If not
implemented in hardware, the instructions will be executed by the kernel as it handles the
unassigned operation code exception. This easily allows addition of floating point hardware
later, and the software handling will take maximum advantage of the fast context changes
available.
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